

AGENT-ORIENTED PROGRAMMING: FROM THEORY TO PRACTICE

Costin Bădică

University of Craiova Department of Computers and Information Technology

UNIVERSITY OF CRAIOVA

Seminar @ IBS - PAN

IDS RESEARCH GROUP

- Intelligent Distributed Systems Research
 Group
- <u>http://ids.software.ucv.ro/</u>
- Synergies between:
 - Intelligent computing
 - Distributed computing

OVERVIEW I. Basics of AOP BDI

Logic-based

II. Examples

Modeling and Enactment of Business Agents Programming Reinforcement Learning Freight Transportation Exchanges

ORIGIN OF WORD "AGENT"

 The word "<u>Agent</u>" comes from the Latin word "<u>Agere</u>".

 It literally means "<u>to do</u>" with the sense of "<u>to act</u>" or "<u>to take action</u>".

AGENTS AND ENVIRONMENTS

- (Weakest) <u>Agent</u> = anything that can be viewed as:
 - perceiving its environment through sensors and
 - *acting* upon that environment through actuators.

[Russel & Norvig, 2010]

ENVIRONMENTS

- (Fully / Partially / Not) Observable:
 - Noisy & inaccurate sensors
 - Immeasurable / inaccessible parts of the environment
- (Single / Multi) Agent
 - Competitive: multiple agents with disjoint goals
 - Cooperative: multiple agents sharing (parts of) goals
- Deterministic / Stochastic
 - Deterministic: environment state completely determined by agent action
 - *Nondeterministic:* probabilities of next states are missing
 - Uncertain: partially observable and stochastic

MAS TECHNOLOGIES

- Methodologies
- Standards
- Frameworks and platforms
- Programming languages
- Other technologies

AGENT ORIENTED PROGRAMMING

• AOP was firstly proposed 25 years ago as:

A <u>new programming paradigm</u>, one based on <u>cognitive</u> and <u>societal</u> view of computation [Shoham, 1993]

Many models and implementations of AOP ! One representative class is based on:
 Belief-Desire-Intention architecture – BDI.

AGENTSPEAK(L) AND JASON

- AgentSpeak(L) = abstract AOP language (Rao, 1996)
- Jason = <u>implementation</u> and <u>extension</u> of AgentSpeak(L), based on Java.
 - Agent program is written in Jason.
 - Environment is written in Java.
 - Agent architecture can be customized in Java.
- AgentSpeak(L) combines BDI and Logic

SOURCE OF INSPIRATION

- <u>Philosophy:</u> Daniel Dennett's "<u>intentional</u> <u>stance</u>":
 - Distinguish between mental and physical phenomena by means of "<u>intentionality</u>".
 - Explain behavior of an (artificial) entity in terms of its "<u>mental properties</u>".
- Dennett introduced BDI concepts:

- belief, desire, goal, practical reasoning, ...

BDI CONCEPTS

- BDI follows practical reasoning model = reasoning towards actions.
- BDI agents are endowed with:
 - Beliefs
 - Desires or goals
 - Intentions or plans
- Agent behavior is *event-driven*.

AGENT PROGRAM

Initial belief base: set of <u>facts</u> and <u>rules</u>:

 $predicate(term_1, ..., term_n)$

- Initial goal(s): achievement goals
 ! predicate(term1, ..., termn)
- <u>Plan base:</u> set of plans:

event : context <- plan body</pre>

- <u>Event:</u> + ! goal ! goal + belief belief
- <u>Context:</u> Conjunctive (&) / disjunctive (|) condition
- Plan body: sequence of actions separated by ;

BDI REASONING STEPS

Update

Select

Act

Deliberation cycle

perceive communicate event applicable plan intention = course of action internal / external mental note adopt / drop goal: test / achievement

VACUUM CLEANER WORLD

- Environment:
 - 2 locations l and r
 - Status of the current location: *clean* or *dirty*.
- <u>Actions:</u>
 - *left*, *right*, *suck*, *no_op*, for "move left", "move right",
 "suck dirt" and "do nothing".
- Percepts:
 - Pair [pos(Location), Status], for example [pos(l), dirty]

REACTIVE / PROACTIVE

+pos(1) : clean <-.print("l clean"); right. +pos(1) : dirty <-.print("l dirty"); suck; right. +pos(r) : clean <-.print("r clean"); left. +pos(r) : dirty <-.print("r dirty"); suck; left.

```
!keep clean.
+!keep clean : dirty &
  pos(L) < -
  .print("suck in ",L);
  suck;
  !move.
+!keep_clean : clean &
  pos(L) < -
  .print("no suck in ",L);
  !move.
+!move : pos(1) <-
  right;
  !keep clean.
+!move : pos(r) <-
  left;
  !keep clean.
```


LOGIC PROGRAMMING

Logic Program = Facts + Rules + Queries

BUSINESS AGENTS

• **AIM:** apply state-of-the-art AOP languages for modeling and enactment of business processes.

ROLE ACTIVITY DIAGRAM

- Three roles:
 - Divisional Director
 - Project Manager
 - Designer

MAPPING OUTLINE

- RAD role => Jason agent. Eg.: *d*, *dd*, *pm* agents.
- State => belief base. E.g.: *dd0*, *dd1*, *dd2*, *d0*, *d1*, ...
- Action => agent plan:
 - +!advance : current state <-

remove tokens do activity append tokens !advance.

RAD process => multi-agent program

MAPPING STATES AND ACTIVITIES

MAPPING CASE REFINEMENTS

```
+!advance : d9 < -
  -d9;
  ?task("Carry out design quality check");
  rad.choice([ok,nok],Result)
  +d10(Result);
  ! advance.
+!advance : d10(nok) <-
  -d10(nok);
  ?task("Design quality not ok");
  +d8;
  ladvance.
```


MAPPING PART REFINEMENTS

+!advance : d1 < -

-d1;

?task("Fork parallel threads");

+d2; +d3;

! advance.

+!advance : d6 & d7 <-

-d6; -d7;

?task("Join parallel threads");

+d8;

!advance.

MAPPING INTERACTIONS

```
+!advance : start <-
   -start;
   ?task("Starting ...");
                                    Divisional Director
   +pm0;
   .send(dd,tell,pm0);
                                              New project approved
                                                                Project Manager
   ! advance.
                                              Agree TOR for project
+!advance : dd1 & pm0 <-
   -dd1;
   -pm0[source(pm)];
   ?task("Agree TOR for project");
   +dd2;
   ! advance.
```


CONTINGENCY PLAN

+pm0 : true <- !advance.

MAPPING SUMMARY

- One proactive plan for agent starting and one proactive plan for agent stopping.
- A proactive plan for each action node.
- One contingency plan to deal with shared beliefs that have not yet arrived from peer agents.
- A reactive plan for handling the arrival of each shared belief from peer agents.

KNOWLEDGE-BASED BUSINESS AGENTS

- Generic knowledge-based business agent architecture $\mathcal{KB}^2\mathcal{A}^2$.
 - A knowledge base that captures the operational knowledge of the agent according to a given business process.
 - A set of template plans that capture the generic behavioral patterns of business agents.

KNOWLEDGE BASE

 \times

$\mathcal{K}\mathcal{B}^2\mathcal{A}^2$ IN ACTION

j3 jEdit - d1.asl

07.12.2018

Seminar @ IBS - PAN

PROGRAMMING REINFORCEMENT LEARNING

- <u>Passive RL:</u> agents act according to a fixed policy and their learning goal is to compute the utility function.
- <u>Active RL:</u> agents learn an optimal policy that maximizes their utility, while they are acting in their environment.

Reinforcement Learning

- Markovian stochastic environment *E*.
- For each state *e* agent receives *reward R*(*e*)
- Agent behavior defined by *policy* $\pi: E \to A$. $a = \pi(e)$ is agent *action* in environment state *e*.
- Agent starting in state *e* generates a *history*: $H(e) = [e_0 = e, e_1, ...,]$
- Each history awards agent with *utility*:

$$U_h(H(e)) = \sum_{i\geq 0} \gamma^i R(e_i)$$

• Utility of policy π is:

$$U^{\pi}(e) = \mathbb{E}\big[U_h\big(H(e)\big)\big]$$

Seminar @ IBS - PAN

PASSIVE REINFORCEMENT LEARNING

- **<u>Goal</u>**: For given policy π the agent learns U^{π} .
- Temporal Difference Learning:
 for each observed state transition e → e'
 the agent computes an updated U^π(e) as follows:

$$U^{\pi}(e) + \alpha \big(R(e) + \gamma U^{\pi}(e') - U^{\pi}(e) \big)$$

ACTIVE REINFORCEMENT LEARNING

- <u>Goal</u>: Compute the optimal policy π^* that maximizes U^{π} . Let $U(e) = U^{\pi^*}(e)$.
- Q(e, a) = utility of taking action a in state e so $U(e) = \max_{a \in Ac} Q(e, a)$
- <u>**Q-learning:**</u> update Q(e, a) for each transition $e \to e'$ $Q(e, a) + \alpha(R(e) + \gamma \max_{a' \in Ac} Q(e', a') - Q(e, a))$
- **SARSA:** *a'* is the actual action taken in state *e'* $Q(e, a) + \alpha(R(e) + \gamma Q(e', a') - Q(e, a))$

SYSTEM ARCHITECTURE

Seminar @ IBS - PAN

ENVIRONMENT

- Class *MDPModel* to store & update environment state
- Class *MDPEnv* to interface with Jason interpreter
- Class *MDPView* GUI & visualization

ACTIONS & PERCEPTS

- Agent actions:
 - up, right, down, left for the agent movement
 - *null*, for restarting a new trial in a random initial position.
- Agent percepts *pos*(*Row*, *Column*, *R*, *T*) such that:
 - *Row* and *Column* give the agent position on the grid
 - R is the reward.
 - T is n for non-terminal state and t for terminal state

ENVIRONMENT GUI

MDP View							<u></u> *	o x
Environment								
Empty environr Si <u>z</u> e Save Load	Ctrl-N Ctrl-Z Ctrl-S Ctrl-O						Free space	•
	→ R: -0.04 U: 0.0 T:0	→ R: -0.04 U: 0.0 T:0	↓ R: -0.04 U: 0.0 T:0	→ R: -0.04 U: 0.0 T:0	↓ R: -0.04 U: 0.0 T:0	R: 0.0 U: 0.0 T:0		
	↓ R: -0.04 U: 0.0 T:0		R: -0.04 U: 0.0 T:0	R: -1.0 U: 0.0 T:0	R: 0.0 U: 0.0 T:0	R: 0.0 U: 0.0 T:0	UP	-
	R: -0.04 U: 0.0 T:0	R: -0.04 U: 0.0 T:0	R: -0.04 U: 0.0 T:0	R: 1.0 U: 0.0 T:0	R: 0.0 U: 0.0 T:0	R: 0.0 U: 0.0 T:0	-0.04	*
	R: 0.0 U: 0.0 T:0		R: 0.0 U: 0.0 T:0	R: 0.0 U: 0.0 T:0	R: 0.0 U: 0.0 T:0	R: 0.0 U: 0.0 T:0	Validate	
	R: 0.0 U: 0.0 T:0	R: 0.0 U: 0.0 T:0	R: 0.0 U: 0.0 T:0			R: 0.0 U: 0.0 T:0		
							Run	

STATE SUMMARY

🕌 Stats: pos(1,3,n)	– 🗆 X				
Action	Q-Value	Number of trials			
DOWN	-0.2534336287468129	50			
RIGHT	-0.27342072330776646	21			
UP	-0.256	6			
LEFT	0.7198818753530539	315			
NULL	0.0	0			

AGENT CODE

- Belief Base:
 - Counters of states and trials
 - Maximum number of trials
 - Last and next action
 - Discount factor
 - Minimum number of state visits to encourage exploration
 - Utility and number of visits for each state
- Goals
 - Achievement goal: learning to act, i.e. determine Q-values
 - Acting = sequence of trials
 - Trial = sequence of moves
 - Update Q-values following each move

Q-LEARNING AGENT

```
+!update_qvalue(St1,_,St,R,Q_St,A,M1) :
   non terminal state(St) <-</pre>
   .findall(Q,qvalue(St1,A1,Q,_),Qs);
   ?maxim list(Qs,Q St1);
   ?gamma (Discount);
   ?alpha(Alpha);
   Q1 = Q St + Alpha*(R+Discount*Q St1-Q St);
   -qvalue(St,A, , );
   +qvalue(St,A,Q1,M1).
+!update_qvalue(_,R1,St,_,_,null,M1) :
   terminal state(St) <-</pre>
   -qvalue(St,null,_,_);
   +qvalue(St,null,R1,M1).
```


Examining Q-values

Q-Values for s(1, 4)

Seminar @ IBS - PAN

NUMBER OF TRIALS

Trials for s(1, 4)

Seminar @ IBS - PAN

FREIGHT TRANSPORTATION EXCHANGES

- Opportunity:
 - need of transporting goods
 - availability of free vehicles
- <u>Goal:</u>
 - capturing transportation opportunities
 - matchmaking of owners of goods with freight transportation providers

New business model: virtual logistics platforms

MAS FOR FREIGHT BROKERING

Seminar @ IBS - PAN

FREIGHT BROKER AGENT

- <u>Declarative optimization model</u> of the *FBAgent*:
 - Defined as type of <u>Vehicle Routing with</u>
 <u>Pickup and Delivery Problem</u> VR-PDP
 - Computing optimal schedules using
 <u>Constraint Logic Programming</u> CLP.

VR-PDP

• Well-known problem in operation research:

Given:

- A set of customers
- A vehicle pool to service deliveries

Determine:

- A minimum cost set of vehicle routes that services all customers
- Service:
 - Pickup = freight loading point
 - Delivery = freight unload point

PROBLEM

Tuple $\langle \mathcal{L}, \mathcal{O}, \mathcal{T}, \Delta \rangle$ s.t.:

- 1. $\mathcal{L} = \text{locations of interest} = \mathcal{P} \cup \mathcal{H}$
 - $\mathcal{P} = \{1, 2, ..., k\}$ = pickup and delivery points, k > 0
 - $\mathcal{H} = \{k + 1, ..., k + h\} = \text{truck home locations}, h \ge 0$
- 2. $\mathcal{O} = \text{customer orders}, |\mathcal{O}| = n. O_i = (OS_i, OD_i, C_i) \text{ s.t.}$:
 - $OS_i, OD_i \in \mathcal{P}, OS_i \neq OD_i$ are pickup and delivery points
 - $C_i > 0$ = requested capacity of order *i*. Obs: $2 \le k \le 2n$.
- 3. $\mathcal{T} = \text{set of trucks}, |\mathcal{T}| = t, T_i = (H_i, \Gamma_i) \text{ s.t.}$

- $H_i \in \mathcal{H}, \Gamma_i > 0$ are home & provided capacity of truck *i*.

4. $\Delta = (k + h) \times (k + h)$ real matrix s.t. $\Delta_{ij} > 0$ are distances between $1 \le i \ne j \le k + h$.

EXAMPLE PROBLEM

- k = 3 pickup and delivery points
- $n = 3 \text{ orders: } \mathcal{O} = \{(1 \rightarrow 2, 5), (1 \rightarrow 3, 2), (2 \rightarrow 3, 6)\}$
- t = 2 trucks: $\mathcal{T} = \{(4,7), (4,5)\}$. Trucks home is 4, so there are h = 1 home locations

SCHEDULE

Tuple $\langle X, M, S, D \rangle$ s.t.:

- 1. $X \in \{1, 2, ..., k\}^m$ = hops sequence of truck routes. Each location is visited, each order needs two hops, $k \le m \le 2n$.
- 2. $M \in \{0, 1, ..., m\}^t$ s.t. M_l is the number of hops of each truck *l*. Total number of hops: $m = \sum_{l=1}^{t} M_l$.
 - $M_l \ge 0$ allows solutions of "*at most*" *t* trucks.
 - $M_l \ge 1$ constraints solutions to use "*exactly*" *t* trucks.
- 3. $S, D \in \{0,1\}^{m \times n}$ are Boolean matrices s.t.:
 - $S_{ij} = 1$ iff X_i is pickup point of order *j*, else $S_{ij} = 0$.
 - $D_{ij} = 1$ iff X_i is delivery point of order *j*, else $D_{ij} = 0$.

EXAMPLE SCHEDULE

- k = 3 pickup and delivery points
- $n = 3 \text{ orders: } \mathcal{O} = \{(1 \rightarrow 2, 5), (1 \rightarrow 3, 2), (2 \rightarrow 3, 6)\}$
- t = 2 trucks: $\mathcal{T} = \{(4,7), (4,5)\}$. Trucks home is 4, so there are h = 1 home locations

Truck t		1	2		
Γ	M	laximum capacity	Maximum capacity 5		
Т	Capacity 5 Capacity 6 Capacity		Capacity 0	Capacity 2	Capacity 0
S,D	Load 1: 1,5	Unload 1: 2,5 Load 3: 2,6	Unload 3:3,6	Load 2: 1,2	Unload 2: 3,2
X	1	2	3	1	3
Hop i	1	2	3	4	5

STATE SPACE SIZE

- $|X| = m, X_i \in \{1, 2, ..., k\}, k \le m \le 2n$
- $|S| = 2^{mn}, |D| = 2^{mn}$
- $Size = \sum_{m=k}^{2n} 2^{mn} 2^{mn} m^k$
- n = 5, k = 6
- Size = $2^{60}6^6 + 2^{70}7^6 + 2^{80}8^6 + 2^{90}9^6 + 2^{100}10^6 >$ 10³⁶ !!

CONSTRAINTS

- Pickup & Delivery Definition
- Non-Redundant Hops
- Pickup Precedes Delivery
- Service Completeness
- Truck Assignments
- Capacity Constraints
- Optimization Cost

PICKUP PRECEDES DELIVERY

• For all hops *i*, *k* if there exists an order *j* such that *i* is the pickup point of *j* and *k* is the delivery point of *j* then *i* precedes *k*, so:

 $(\forall i,k) \ ((\exists j)((S_{ij} = 1) \land (D_{ij} = 1)) \Rightarrow (i < k))$

• Using $p \Rightarrow q \equiv \neg q \Rightarrow \neg p$ we obtain a simpler form: $(\forall i, j, k)((i \ge k) \Rightarrow ((S_{ij} = 0) \lor (D_{ij} = 0)))$

CONSTRAINT LOGIC PROGRAMMING

- CLP program = facts and rules built using predicates:
 - i. Normal Prolog predicates handled by Prolog engine
 - ii. Constraints handles by special constraint solvers
- CLP program structure:
 - i. Definition of variables and domains
 - ii. Definition of constraints
 - iii. Definition of cost variable
 - iv. Search for optimal solution

OPTIMIZATION AGENT – OAGENT

SCHEDULING PROBLEM AS PROLOG FACTS

```
number of orders(3).
number of cities(3).
number of trucks(3).
number of homes(1).
% order(OrderIdx, LoadIdx, UnloadIdx, Capacity)
order(1,1,2,5).
order(2,1,3,2).
order(3, 2, 3, 6).
% truck(TruckIdx, HomeIdx, MaxCapacity)
truck(1, 4, 7).
truck(2, 4, 4).
truck(3, 4, 5).
% distance(LocationI, LocationJ, DistanceIJ)
distance(1,2,10).
distance(2,1,10).
8 . . .
distance(4,3,10).
```


SOLUTION PREDICATE

```
solution(_m,_n,_t,M,S,D,X,Ds) :-
   domains_and_variables(_m,_n,_t,M,S,D,X,Delta),
   constraints(_m,_n,_t,M,S,D,X),
   search_query(X,S,D),
   compute_distances(_m,_t,M,Delta,X,Ds).
```


IMPLEMENTATION OF CONSTRAINTS

- Logic: $(\forall i, j, k)((i \ge k) \Rightarrow ((S_{ij} = 0) \lor (D_{ij} = 0)))$
- ECLiPSe-CLP:

SEARCH PROCESS

- Top level search
 - Instantiates number of hops m and vector M of route lengths of each truck such that: $\sum_{l=1}^{t} M_l = m$
- Main search

- Searches for problem solutions *X*, *S*, *D* for fixed values of *m* and *M*.

SEARCH QUERY

DATA SET & SEARCH CONFIGURATION

Data set	n	t	k	Top search	Main search	Timeout/run [s]	# Runs	# nodes/ main search	Limit reached?
10-4	10	4	6	Complete	lds(1)	60	20	10,000	No
10-8	10	8	6	1ds(3)	lds(1)	90	20	10,000	No
10-12	10	12	6	lds(3)	lds(2)	150	20	12,000	Yes
15-4	15	4	6	lds(3)	lds(1)	90	20	10,000	No
15-8	15	8	6	lds(3)	lds(1)	150	20	10,000	No
15-12	15	12	6	lds(3)	lds(2)	210	20	14,000	Yes
20-4	20	4	6	lds(3)	lds(1)	120	20	12,000	Yes
20-8	20	8	6	lds(2)	lds(2)	180	20	18,000	Yes
20-12	20	12	6	lds(2)	lds(2)	240	20	16,000	Yes
25-4	25	4	6	lds(2)	lds(2)	150	20	12,000	Yes
25-8	25	8	6	lds(2)	lds(2)	210	20	12,000	Yes
40-4	40	4	6	lds(3)	lds(2)	300	12	38,000	Yes

n is the number of orders, t is the number of trucks, and k is the number of locations

SOLUTIONS OF 10-4 PROBLEM

Seminar @ IBS - PAN

References

- Amelia Bădică, Costin Bădică, Florin Leon, Ionuţ Buligiu: *Modeling and Enactment of Business Agents Using Jason*, In: Proc. 9th Hellenic Conference on Artificial Intelligence, SETN '16, ACM, (2016) doi: 10.1145/2903220.2903253
- Costin Bădică, Alex Becheru and Samuel Felton. Integration of Jason Reinforcement Learning Agents into an Interactive Application. In: Proc. 19th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, (SYNASC 2017), 361-368, IEEE, (2017) doi: 10.1109/SYNASC.2017.00065
- Costin Bădică, Florin Leon, Amelia Bădică. *Freight transportation* broker agent based on constraint logic programming. Evolving Systems. Springer (2018) doi: 10.1007/s12530-018-9230-3

