Machine Learning and Logic: Fast and Slow Thinking

Moshe Y. Vardi

Rice University

Is Computer Science Fundamentally Changing?

Formal Science vs Data Science

- We are at peak hype about machine learning and big data!
- Common perception: A Kuhnian paradigm shift!
- "Throw out the old, bring in the new!"
- In reality: new scientific theories refine old ones.
- After all, we went to the moon with Newtonian Mechanics!
- My Thesis: Data science refines formal science!

Logic vs. Machine Learning

Daniel Kahneman, Thinking, Fast and Slow, 2011:

- Machine Learning: fast thinking, e.g., "Is this a stop sign?"
- Logic: slow thinking, e.g., "Do you stop at a stop sign?"
- Logic is about semantics!

Example-Autonomous Vehicles: how to establish safety? [Shashua, '17]

- Data Driven: Drive 1B miles!
- Data+Model Driven: Combine data (1M miles) with reasoning.

Grand Challenge: Combine logic with machine learning!

Regulating Automated Decisions Systems

James Larus and Chris Hankin, CACM, Aug. 2018: "The widespread adoption of AD systems will be economically disruptive and will raise new and complex societal challenges. ... Disdain for regulation is pervasive throughout the tech industry. In the case of automated decision making, this attitude is mistaken."

How to Regulate?

- Fairness, accountability, transparency, explainability

Explainability

Explainable AI: AI in which the results of the solution can be understood by humans - explainable Al is a must for human-centered Al.

Corollary: Explanation must be high level, rather than low level - logic!
Hermanm Weyl, 1995-1955: "We cannot deny that there lives in us a need for theory that is absolutely inexplicable from a merely phenomenalist standpoint. That need has a drive to create, directed to a symbolic layout of the transcendent, which demands satisfaction."

Grand Challenge: Combine logic with machine learning - neurosymbolic reasoning.

My approach: Make logic quantitative.

Boole's Symbolic Logic

Boole's insight: Aristotle's syllogisms are about classes of objects, which can be treated algebraically.
> "If an adjective, as 'good', is employed as a term of description, let us represent by a letter, as y, all things to which the description 'good' is applicable, i.e., 'all good things', or the class of 'good things'. Let it further be agreed that by the combination $x y$ shall be represented that class of things to which the name or description represented by x and y are simultaneously applicable. Thus, if x alone stands for 'white' things and y for 'sheep', let $x y$ stand for 'white sheep'.

Boolean Satisfiability

Boolean Satisfiability (SAT); Given a Boolean expression, using "and" (\wedge) "or", (\vee) and "not" (\neg), is there a satisfying solution (an assignment of 0 's and 1 's to the variables that makes the expression equal 1)?

Example:

$$
\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(x_{3} \vee x_{1} \vee x_{4}\right)
$$

Solution: $x_{1}=0, x_{2}=0, x_{3}=1, x_{4}=1$

Complexity of Boolean Reasoning

History:

- William Stanley Jevons, 1835-1882: "I have given much attention, therefore, to lessening both the manual and mental labour of the process, and I shall describe several devices which may be adopted for saving trouble and risk of mistake."
- Ernst Schröder, 1841-1902: "Getting a handle on the consequences of any premises, or at least the fastest method for obtaining these consequences, seems to me to be one of the noblest, if not the ultimate goal of mathematics and logic."
- Cook, 1971, Levin, 1973: Boolean Satisfiability is NP-complete.

Algorithmic Boolean Reasoning: Early History

- Newell, Shaw, and Simon, 1955: "Logic Theorist"
- Davis and Putnam, 1958: "Computational Methods in The Propositional calculus", unpublished report to the NSA
- Davis and Putnam, JACM 1960: "A Computing procedure for quantification theory"
- Davis, Logemman, and Loveland, CACM 1962: "A machine program for theorem proving"
DPLL Method: Propositional Satisfiability Test
- Convert formula to conjunctive normal form (CNF)
- Backtracking search for satisfying truth assignment
- Unit-clause preference

Modern SAT Solving

CDCL $=$ conflict-driven clause learning

- Backjumping
- Smart unit-clause preference
- Conflict-driven clause learning
- Smart choice heuristic (brainiac vs speed demon)
- Restarts

Key Tools: GRASP, 1996; Chaff, 2001
Current capacity: millions of variables

Some Experience with SAT Solving

Speed-up of 2012 solver over other solvers

Knuth Gets His Satisfaction

SIAM News, July 26, 2016: "Knuth Gives Satisfaction in SIAM von Neumann Lecture"

Donald Knuth gave the 2016 John von Neumann lecture at the SIAM Annual Meeting. The von Neumann lecture is SIAM's most prestigious prize.
Knuth based the lecture, titled "Satisfiability and Combinatorics", on the latest part (Volume 4, Fascicle 6) of his The Art of Computer Programming book series. He showed us the first page of the fascicle, aptly illustrated with the quote "I can't get no satisfaction," from the Rolling Stones. In the preface of the fascicle Knuth says "The story of satisfiability is the tale of a triumph of software engineering, blended with rich doses of beautiful mathematics".

Applications of SAT Solving in SW Engineering

Leonardo De Moura+Nikolaj Björner, 2012: Applications of Z3 at Microsoft

- Symbolic execution
- Model checking
- Static analysis
- Model-based design
- ...

Verification of HW/SW systems

HW/SW Industry: \$1.5T per year!
Major Industrial Problem: Functional Verification - ensuring that computing systems satisfy their intended functionality

- Verification consumes the majority of the development effort!

Two Major Approaches:

- Formal Verification: Constructing mathematical models of systems under verification and analyzing them mathematically: $\leq 10 \%$ of verification effort
- Dynamic Verification: simulating systems under different testing scenarios and checking the results: $\geq 90 \%$ of verification effort

Dynamic Verification

- Dominant approach!
- Design is simulated with input test vectors.
- Test vectors represent different verification scenarios.
- Results compared to intended results.
- Challenge: Exceedingly large test space!

Motivating Example: HW FP Divider

$z=x / y: x, y, z$ are 128 -bit floating-point numbers
Question How do we verify that circuit works correctly?

- Try for all values of x and y ?
- 2^{256} possibilities
- Sun will go nova before done! Not scalable!

Test Generation

Classical Approach: manual test generation - capture intuition about problematic input areas

- Verifier can write about 20 test cases per day: not scalable!

Modern Approach: random-constrained test generation

- Verifier writes constraints describing problematic inputs areas (based on designer intuition, past bug reports, etc.)
- Uses constraint solver to solve constraints, and uses solutions as test inputs - rely on industrial-strength constraint solvers!
- Proposed by Lichtenstein+Malka+Aharon, 1994: de-facto industry standard today!

Random Solutions

Major Question: How do we generate solutions randomly and uniformly?

- Randomly: We should not reply on solver internals to chose input vectors; we do not know where the errors are!
- Uniformly: We should not prefer one area of the solution space to another; we do not know where the errors are!

Uniform Generation of SAT Solutions: Given a SAT formula, generate solutions uniformly at random, while scaling to industrial-size problems.

Constrained Sampling: Applications

Many Applications:

- Constrained-random Test Generation: discussed above
- Personalized Learning: automated problem generation
- Search-Based Optimization: generate random points of the candidate space
- Probabilistic Inference: Sample after conditioning

Constrained Sampling - Prior Approaches, I

Theory:

- Jerrum+Valiant+Vazirani: Random generation of combinatorial structures from a uniform distribution, TCS 1986 - uniform generation by a randomized polytime algrithm with an Σ_{2}^{p} oracle.
- Bellare + Goldreich + Petrank: Uniform generation of NP-witnesses using an NP-oracle, 2000 - uniform generation by a randomized polytime algorithm with an $N P$ oracle.

We implemented the BPG Algorithm: did not scale above 16 variables!

Constrained Sampling - Prior Work, II

Practice:

- BDD-based: Yuan, Aziz, Pixley, Albin: Simplifying Boolean constraint solving for random simulation-vector generation, 2004 - poor scalability
- Heuristics approaches: MCMC-based, randomized solvers, etc. - good scalability, poor uniformity

Almost Uniform Generation of Solutions

New Algorithm - UniGen: Chakraborty, Fremont, Meel, Seshia, V, 2013-15:

- almost uniform generation by a randomized polytime algorithms with a SAT oracle.
- Based on universal hashing.
- Uses an SMT solver.
- Scales to millions of variables.
- Enables parallel generation of solutions after preprocessing.

Uniformity vs Almost-Uniformity

- Input formula: φ; Solution space: $\operatorname{Sol}(\varphi)$
- Solution-space size: $\kappa=|\operatorname{Sol}(\varphi)|$
- Uniform generation: for every assignment $y: \operatorname{Prob}[$ Output $=y]=1 / \kappa$
- Almost-Uniform Generation: for every assignment y : $\frac{(1 / \kappa)}{(1+\varepsilon)} \leq \operatorname{Prob}[$ Output $=y] \leq(1 / \kappa) \times(1+\varepsilon)$

The Basic Idea

1. Partition $\operatorname{Sol}(\varphi)$ into "roughly" equal small cells of appropriate size.
2. Choose a random cell.
3. Choose at random a solution in that cell.

You got random solution almost uniformly!
Question: How can we partition $\operatorname{Sol}(\varphi)$ into "roughly" equal small cells without knowing the distribution of solutions?

Answer: Universal Hashing [Carter-Wegman 1979, Sipser 1983]

Universal Hashing

Hash function: maps $\{0,1\}^{n}$ to $\{0,1\}^{m}$

- Random inputs: All cells are roughly equal (in expectation)

Universal family of hash functions: Choose hash function randomly from family

- For arbitrary distribution on inputs: All cells are roughly equal (in expectation)

Strong Universality

Universal Family: Each input is hashed uniformly, but different inputs might not be hashed independently.
$H(n, m, r)$: Family of r-universal hash functions mapping $\{0,1\}^{n}$ to $\{0,1\}^{m}$ such that every r elements are mapped independently.

- Higher r: Stronger guarantee on range of sizes of cells
- r-wise universality: Polynomials of degree $r-1$

Strong Universality

Key: Higher universality \Rightarrow higher complexity!

- BGP: n-universality \Rightarrow all cells are small \Rightarrow uniform generation
- UniGen: 3-universality \Rightarrow a random cell is small w.h.p \Rightarrow almost-uniform generation

From tens of variables to millions of variables!

XOR-Based 3-Universal Hashing

- Partition $\{0,1\}^{n}$ into 2^{m} cells.
- Variables: $X_{1}, X_{2}, \ldots X_{n}$
- Pick every variable with probability $1 / 2$, XOR them, and equate to $0 / 1$ with probability $1 / 2$.
- E.g.: $X_{1}+X_{7}+\ldots+X_{117}=0$ (splits solution space in half)
- m XOR equations $\Rightarrow 2^{m}$ cells
- Cell constraint: a conjunction of CNF and XOR clauses

SMT: Satisfiability Modulo Theory

SMT Solving: Solve Boolean combinations of constraints in an underlying theory, e.g., linear constraints, combining SAT techniques and domainspecific techniques.

- Tremendous progress since 2000 !

CryptoMiniSAT: M. Soos, 2009

- Specialized for combinations of CNF and XORs
- Combine SAT solving with Gaussian elimination

UniGen Performance: Uniformity

Uniformity Comparison: UniGen vs Uniform Sampler

UniGen Performance: Runtime

Runtime Comparison: UniGen vs XORSample'

From Sampling to Counting

- Input formula: $\varphi ;$ Solution space: $\operatorname{Sol}(\varphi)$
- \#SAT Problem: Compute $|\operatorname{Sol}(\varphi)|$
- $\varphi=(p \vee q)$
$-\operatorname{Sol}(\varphi)=\{(0,1),(1,0),(1,1)\}$
$-|\operatorname{Sol}(\varphi)|=3$

Fact: \#SAT is complete for \#P - the class of counting problems for decision problems in NP [Valiant, 1979].

Constrained Counting

A wide range of applications!

- Coverage in random-constrained verification
- Bayesian inference
- Planning with uncertainty

But: \#SAT is really a hard problem! In practice, quite harder than $S A T$.

Approximate Counting

Trustworthy Approximation - Probably Approximately Correct (PAC):

- Formula: φ, Tolerance: ε, Confidence: $0<\delta<1$
- $|\operatorname{Sol}(\varphi)|=\kappa$
- $\operatorname{Prob}\left[\frac{\kappa}{(1+\varepsilon)} \leq\right.$ Count $\leq \kappa \times(1+\varepsilon) \geq \delta$
- Introduced in [Stockmeyer, 1983]
- [Jerrum+Sinclair+Valiant, 1989]: $B P P^{N P}$
- No implementation so far.

From Sampling to Counting

ApproxMC: [Chakraborty+Meel+V., 2013]

- Use m random XOR clauses to select at random an appropriately small cell.
- Count number of solutions in cell and multiply by 2^{m} to obtain estimate of $|\operatorname{Sol}(\varphi)|$.
- Iterate until desired confidence is achieved.

ApproxMC runs in time polynomial in $|\varphi|, \varepsilon^{-1}$, and $\log (1-\delta)^{-1}$, relative to SAT oracle.

ApproxMC Performance: Accuracy

Accuracy: ApproxMC vs Cachet (exact counter)

ApproxMC Performance: Runtime

Runtime Comparison: ApproxMC vs Cachet'

Back to Neural Nets

Baluta-Shen-Shinde-Meel-Saxena, CCS'19: Quantitative Verification of Neural Networks And Its Security Applications

Problem: Given a set N of neural networks and a property P of interest, defined over the union of inputs and outputs of neural networks in N, estimate how often P is satisfied.

Security Applications: robustness, Trojan attacks, fairness, etc.
Key Technology: ApproxMC!

SAT Solving

- The improvement in the performance of SAT solvers over the past 25 years is revolutionary!
- Better marketing: Deep Solving
- SAT solving is an enabler, e.g., approximate sampling and counting
- When you have a big hammer, look for nails!!!
- Scalability is an ongoing challenge!

Reflection on \mathbf{P} vs. NP

Old Cliché "What is the difference between theory and practice? In theory, they are not that different, but in practice, they are quite different."

P vs. NP in practice:

- P=NP: Conceivably, NP-complete problems can be solved in polynomial time, but the polynomial is $n^{1,000}$ - impractica!!
- $\mathrm{P} \neq$ NP: Conceivably, NP-complete problems can be solved by $n^{\log \log \log n}$ operations - practica!!

Conclusion: No guarantee that solving P vs. NP would yield practical benefits.

Are NP-Complete Problems Really Hard?

- When I was a graduate student, SAT was a "scary" problem, not to be touched with a 10 -foot pole.
- Indeed, there are SAT instances with a few hundred variables that cannot be solved by any extant SAT solver.
- But today's SAT solvers, which enjoy wide industrial usage, routinely solve real-life SAT instances with millions of variables!

Conclusion We need a richer and broader complexity theory, a theory that would explain both the difficulty and the easiness of problems like SAT.

Question: Now that SAT is "easy" in practice, how can we leverage that?

- We showed how to leverage for sampling and counting. What else?
- Is $B P P^{N P}$ the "new" PTIME?

From Model-Driven Computer Science to Data-Driven Computer Science and Back

In Summary:

- It is a paradigm glide, not paradigm shift.
- Data-driven CS refines model-driven CS, it does not replace it.
- Physicists still teach Mechanics, Electromagnetism, and Optics.
- But we must bridge the gap between machine learning and logic to get human-centered AI.

