
1

Costin Bădică

University of Craiova

Department of Computers and Information Technology

AGENT-ORIENTED

PROGRAMMING: FROM THEORY

TO PRACTICE

07.12.2018 Seminar @ IBS - PAN

2

UNIVERSITY OF CRAIOVA

07.12.2018 Seminar @ IBS - PAN

3

IDS RESEARCH GROUP

• Intelligent Distributed Systems Research

Group

• http://ids.software.ucv.ro/

• Synergies between:

– Intelligent computing

– Distributed computing

07.12.2018 Seminar @ IBS - PAN

http://ids.software.ucv.ro/
http://ids.software.ucv.ro/

4

OVERVIEW

I. Basics of AOP

BDI

Logic-based

II. Examples

Modeling and Enactment of Business Agents

Programming Reinforcement Learning

Freight Transportation Exchanges

07.12.2018 Seminar @ IBS - PAN

5

ORIGIN OF WORD “AGENT”

• The word “Agent” comes from the Latin word

“Agere”.

• It literally means "to do" with the sense of

"to act" or "to take action".

07.12.2018 Seminar @ IBS - PAN

6

AGENTS AND ENVIRONMENTS

• (Weakest) Agent = anything that can be viewed as:

– perceiving its environment through sensors and

– acting upon that environment through actuators.

[Russel & Norvig, 2010]

07.12.2018 Seminar @ IBS - PAN

7

ENVIRONMENTS

• (Fully / Partially / Not) Observable:
– Noisy & inaccurate sensors

– Immeasurable / inaccessible parts of the environment

• (Single / Multi) Agent
– Competitive: multiple agents with disjoint goals

– Cooperative: multiple agents sharing (parts of) goals

• Deterministic / Stochastic
– Deterministic: environment state completely determined

by agent action

– Nondeterministic: probabilities of next states are missing

– Uncertain: partially observable and stochastic

07.12.2018 Seminar @ IBS - PAN

8

MAS TECHNOLOGIES

• Methodologies

• Standards

• Frameworks and platforms

• Programming languages

• Other technologies

07.12.2018 Seminar @ IBS - PAN

9

AGENT ORIENTED PROGRAMMING

• AOP was firstly proposed 25 years ago as:

A new programming paradigm, one based on

cognitive and societal view of computation

[Shoham, 1993]

• Many models and implementations of AOP ! One

representative class is based on:

Belief-Desire-Intention architecture – BDI.

07.12.2018 Seminar @ IBS - PAN

10

AGENTSPEAK(L) AND JASON

• AgentSpeak(L) = abstract AOP language

(Rao, 1996)

• Jason = implementation and extension of

AgentSpeak(L), based on Java.

– Agent program is written in Jason.

– Environment is written in Java.

– Agent architecture can be customized in Java.

• AgentSpeak(L) combines BDI and Logic

07.12.2018 Seminar @ IBS - PAN

11

SOURCE OF INSPIRATION

• Philosophy: Daniel Dennett’s “intentional

stance”:

– Distinguish between mental and physical

phenomena by means of “intentionality”.

– Explain behavior of an (artificial) entity in terms

of its “mental properties”.

• Dennett introduced BDI concepts:

– belief, desire, goal, practical reasoning, …

07.12.2018 Seminar @ IBS - PAN

12

BDI CONCEPTS

• BDI follows practical reasoning model =

reasoning towards actions.

• BDI agents are endowed with:

– Beliefs

– Desires or goals

– Intentions or plans

• Agent behavior is event-driven.

07.12.2018 Seminar @ IBS - PAN

13

AGENT PROGRAM

• Initial belief base: set of facts and rules:

𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒(𝑡𝑒𝑟𝑚1, … , 𝑡𝑒𝑟𝑚𝑛)

• Initial goal(s): achievement goals

!𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒(𝑡𝑒𝑟𝑚1, … , 𝑡𝑒𝑟𝑚𝑛)

• Plan base: set of plans:

𝑒𝑣𝑒𝑛𝑡 : 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 <- 𝑝𝑙𝑎𝑛 𝑏𝑜𝑑𝑦

• Event: +!𝑔𝑜𝑎𝑙 -!𝑔𝑜𝑎𝑙 +𝑏𝑒𝑙𝑖𝑒𝑓 -𝑏𝑒𝑙𝑖𝑒𝑓

• Context: Conjunctive (&) / disjunctive (|) condition

• Plan body: sequence of actions separated by ;

07.12.2018 Seminar @ IBS - PAN

14

BDI REASONING STEPS

• Update

• Select

• Act

perceive

communicate

event

applicable plan

intention = course of action

internal / external

mental note

adopt / drop goal:
test / achievement

07.12.2018 Seminar @ IBS - PAN

Deliberation cycle

15

VACUUM CLEANER WORLD

• Environment:
– 2 locations 𝑙 and 𝑟

– Status of the current location: 𝑐𝑙𝑒𝑎𝑛 or 𝑑𝑖𝑟𝑡𝑦.

• Actions:
– 𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔𝑕𝑡, 𝑠𝑢𝑐𝑘, 𝑛𝑜_𝑜𝑝, for “move left”, “move right”,

“suck dirt” and “do nothing”.

• Percepts:
– Pair ,𝑝𝑜𝑠(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛), 𝑆𝑡𝑎𝑡𝑢𝑠-, for example ,𝑝𝑜𝑠(𝑙), 𝑑𝑖𝑟𝑡𝑦-

𝑙 𝑟

07.12.2018 Seminar @ IBS - PAN

16

REACTIVE / PROACTIVE
+pos(l) : clean <-

 .print("l clean");

 right.

+pos(l) : dirty <-

 .print("l dirty");

 suck;

 right.

+pos(r) : clean <-

 .print("r clean");

 left.

+pos(r) : dirty <-

 .print("r dirty");

 suck;

 left.

!keep_clean.

+!keep_clean : dirty &

pos(L) <-

 .print("suck in ",L);

 suck;

 !move.

+!keep_clean : clean &

pos(L) <-

 .print("no suck in ",L);

 !move.

+!move : pos(l) <-

 right;

 !keep_clean.

+!move : pos(r) <-

 left;

 !keep_clean.

07.12.2018 Seminar @ IBS - PAN

17

LOGIC PROGRAMMING

Belief Base Test goals

 Logic Program = Facts + Rules + Queries

07.12.2018 Seminar @ IBS - PAN

18

BUSINESS AGENTS

• AIM: apply state-of-the-art AOP languages for

modeling and enactment of business processes.

 Case

refinement

Part

refinement

Interaction

State

State

description

Activity

External event

07.12.2018 Seminar @ IBS - PAN

19

ROLE ACTIVITY

DIAGRAM

• Three roles:

– Divisional Director

– Project Manager

– Designer

New project approved

Agree TOR for

Designer and

delegate

Write TOR for

Designer

Prepare and

estimate

Receive and

estimate

Prepare a plan

Give Plan to

Designer

Choose a

method

Produce Design using Method

Carry out design quality check

ok Not ok

Prepare Actual

Effort Figures

Pass Actual

Effort Figures

Produce Debrief

Report

Project completed

and debriefed

Agree TOR for project

Project Manager

Designer

Divisional Director

07.12.2018 Seminar @ IBS - PAN

20

MAPPING OUTLINE

• RAD role => Jason agent. Eg.: d, dd, pm agents.

• State => belief base. E.g.: dd0, dd1, dd2, d0, d1, …

• Action => agent plan:

+!advance : 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒 <-

𝑟𝑒𝑚𝑜𝑣𝑒 𝑡𝑜𝑘𝑒𝑛𝑠

𝑑𝑜 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝑎𝑝𝑝𝑒𝑛𝑑 𝑡𝑜𝑘𝑒𝑛𝑠

!advance.

• RAD process => multi-agent program

07.12.2018 Seminar @ IBS - PAN

𝑠𝑡𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒

21

MAPPING STATES AND ACTIVITIES
+!advance : dd0 <-

-dd0;

?task("New project approved");

+dd1;

!advance.

+!advance : start <-

-start;

?task("Starting ...");

+dd0;

!advance.

+!advance : dd2 <-

-dd2;

?task("Stop").

07.12.2018 Seminar @ IBS - PAN

Start state

End state

22

MAPPING CASE REFINEMENTS

+!advance : d9 <-

-d9;

?task("Carry out design quality check");

rad.choice([ok,nok],Result)

+d10(Result);

!advance.

+!advance : d10(nok) <-

-d10(nok);

?task("Design quality not ok");

+d8;

!advance.

07.12.2018 Seminar @ IBS - PAN

23

MAPPING PART REFINEMENTS

+!advance : d1 <-

-d1;

?task("Fork parallel threads");

+d2;

+d3;

!advance.

+!advance : d6 & d7 <-

-d6;

-d7;

?task("Join parallel threads");

+d8;

!advance.

07.12.2018 Seminar @ IBS - PAN

24

MAPPING INTERACTIONS

+!advance : start <-

-start;

?task("Starting ...");

+pm0;

.send(dd,tell,pm0);

!advance.

+!advance : dd1 & pm0 <-

-dd1;

-pm0[source(pm)];

?task("Agree TOR for project");

+dd2;

!advance.

07.12.2018 Seminar @ IBS - PAN

25

CONTINGENCY PLAN

+!advance : dd1 & pm0 <-

-dd1;

-pm0[source(pm)];

?task("Agree TOR for project");

+dd2;

!advance.

-!advance : true.

+pm0 : true <- !advance.

07.12.2018 Seminar @ IBS - PAN

26

MAPPING SUMMARY

• One proactive plan for agent starting and one

proactive plan for agent stopping.

• A proactive plan for each action node.

• One contingency plan to deal with shared beliefs

that have not yet arrived from peer agents.

• A reactive plan for handling the arrival of each

shared belief from peer agents.

07.12.2018 Seminar @ IBS - PAN

27

KNOWLEDGE-BASED BUSINESS AGENTS

• Generic knowledge-based business agent

architecture – KB2A2.

– A knowledge base that captures the operational

knowledge of the agent according to a given

business process.

– A set of template plans that capture the generic

behavioral patterns of business agents.

07.12.2018 Seminar @ IBS - PAN

28

KNOWLEDGE BASE

% rule(Action, StateIn, StateOut).

rule(task("Fork parallel threads"), [d1],

 [d2,d3]).

rule(task("Prepare and estimate"), [d3],

 [d4,s(pm,d4)]).

rule(task("Receive and estimate"),

 [d4,r(pm,pm3)],[d5,s(pm,d5)]).

...
rule(choice("Carry out design quality check",

 [ok,nok]), [d9], [[ok,d10(ok)],

 [nok, d10(nok)]]).

Send shared belief

Receive shared belief

07.12.2018 Seminar @ IBS - PAN

“Receive and estimate”

29

KB2A2 IN ACTION

07.12.2018 Seminar @ IBS - PAN

30

PROGRAMMING REINFORCEMENT LEARNING

Environment

Agent

action

percept = (reward,state)

• Passive RL: agents act according to a fixed policy and

their learning goal is to compute the utility function.

• Active RL: agents learn an optimal policy that maximizes

their utility, while they are acting in their environment.

07.12.2018 Seminar @ IBS - PAN

31

REINFORCEMENT LEARNING

• Markovian stochastic environment E.

• For each state 𝑒 agent receives reward 𝑅(𝑒)

• Agent behavior defined by policy 𝜋: 𝐸 → 𝐴 .
𝑎 = 𝜋 𝑒 is agent action in environment state 𝑒.

• Agent starting in state 𝑒 generates a history:

𝐻 𝑒 = ,𝑒0 = 𝑒, 𝑒1, … , -

• Each history awards agent with utility:

𝑈ℎ(𝐻(𝑒)) = 𝛾𝑖≥0
𝑖
𝑅(𝑒𝑖)

• Utility of policy 𝜋 is:

𝑈𝜋 𝑒 = 𝔼 𝑈ℎ 𝐻 𝑒

 07.12.2018 Seminar @ IBS - PAN

32

PASSIVE REINFORCEMENT LEARNING

• Goal: For given policy 𝜋 the agent learns 𝑈𝜋.

• Temporal Difference Learning:

for each observed state transition 𝑒 → 𝑒′

the agent computes an updated 𝑈𝜋(𝑒) as follows:

𝑈𝜋 𝑒 + 𝛼 𝑅 𝑒 + 𝛾𝑈𝜋 𝑒′ − 𝑈𝜋 𝑒

07.12.2018 Seminar @ IBS - PAN

33

ACTIVE REINFORCEMENT LEARNING

• Goal: Compute the optimal policy 𝜋∗ that

maximizes 𝑈𝜋. Let 𝑈 𝑒 = 𝑈𝜋
∗
(𝑒).

• 𝑄 𝑒, 𝑎 = utility of taking action 𝑎 in state 𝑒 so

𝑈 𝑒 = max
𝑎∈𝐴𝑐

𝑄(𝑒, 𝑎)

• Q-learning: update 𝑄(𝑒, 𝑎) for each transition 𝑒 → 𝑒′
𝑄 𝑒, 𝑎 + 𝛼(𝑅 𝑒 + 𝛾 max

a′∈𝐴𝑐
𝑄(𝑒′, 𝑎′) − 𝑄 𝑒, 𝑎)

• SARSA: 𝑎′ is the actual action taken in state 𝑒′
𝑄 𝑒, 𝑎 + 𝛼(𝑅 𝑒 + 𝛾𝑄 𝑒′, 𝑎′ − 𝑄 𝑒, 𝑎)

07.12.2018 Seminar @ IBS - PAN

34

SYSTEM ARCHITECTURE

07.12.2018 Seminar @ IBS - PAN

https://github.com/IntelligentDistributedSystems/SamuelFelton

35

ENVIRONMENT

• Class MDPModel to

store & update

environment state

• Class MDPEnv to

interface with Jason

interpreter

• Class MDPView – GUI

& visualization

07.12.2018 Seminar @ IBS - PAN

36

ACTIONS & PERCEPTS

• Agent actions:

– 𝑢𝑝, 𝑟𝑖𝑔𝑕𝑡, 𝑑𝑜𝑤𝑛, 𝑙𝑒𝑓𝑡 for the agent movement

– 𝑛𝑢𝑙𝑙, for restarting a new trial in a random initial position.

• Agent percepts 𝑝𝑜𝑠(𝑅𝑜𝑤, 𝐶𝑜𝑙𝑢𝑚𝑛, 𝑅, 𝑇) such that:

– 𝑅𝑜𝑤 and 𝐶𝑜𝑙𝑢𝑚𝑛 give the agent position on the grid

– 𝑅 is the reward.

– 𝑇 is 𝑛 for non-terminal state and 𝑡 for terminal state

07.12.2018 Seminar @ IBS - PAN

37

ENVIRONMENT GUI

07.12.2018 Seminar @ IBS - PAN

38

STATE SUMMARY

07.12.2018 Seminar @ IBS - PAN

39

AGENT CODE

• Belief Base:
– Counters of states and trials

– Maximum number of trials

– Last and next action

– Discount factor

– Minimum number of state visits to encourage exploration

– Utility and number of visits for each state

• Goals

– Achievement goal: learning to act, i.e. determine Q-values

– Acting = sequence of trials

– Trial = sequence of moves

– Update Q-values following each move

07.12.2018 Seminar @ IBS - PAN

40

Q-LEARNING AGENT
+!update_qvalue(St1,_,St,R,Q_St,A,M1) :

 non_terminal_state(St) <-

 .findall(Q,qvalue(St1,A1,Q,_),Qs);

 ?maxim_list(Qs,Q_St1);

 ?gamma(Discount);

 ?alpha(Alpha);

 Q1 = Q_St + Alpha*(R+Discount*Q_St1-Q_St);

 -qvalue(St,A,_,_);

 +qvalue(St,A,Q1,M1).

+!update_qvalue(_,R1,St,_,_,null,M1) :

 terminal_state(St) <-

 -qvalue(St,null,_,_);

 +qvalue(St,null,R1,M1).

07.12.2018 Seminar @ IBS - PAN

41

Examining Q-values

07.12.2018 Seminar @ IBS - PAN

42

NUMBER OF TRIALS

07.12.2018 Seminar @ IBS - PAN

43

FREIGHT TRANSPORTATION EXCHANGES

• Opportunity:

– need of transporting goods

– availability of free vehicles

• Goal:

– capturing transportation

opportunities

– matchmaking of owners of

goods with freight

transportation providers

• New business model: virtual logistics platforms

07.12.2018 Seminar @ IBS - PAN

44

MAS FOR FREIGHT BROKERING

07.12.2018 Seminar @ IBS - PAN

45

AGENT INTERACTION

07.12.2018 Seminar @ IBS - PAN

46

FREIGHT BROKER AGENT

• Declarative optimization model of the

FBAgent:

– Defined as type of Vehicle Routing with

Pickup and Delivery Problem – VR-PDP

– Computing optimal schedules using

Constraint Logic Programming – CLP.

07.12.2018 Seminar @ IBS - PAN

47

VR-PDP

• Well-known problem in operation research:

Given:

– A set of customers

– A vehicle pool to service deliveries

Determine:

– A minimum cost set of vehicle routes that services

all customers

• Service:

– Pickup = freight loading point

– Delivery = freight unload point

07.12.2018 Seminar @ IBS - PAN

48

PROBLEM
Tuple ℒ, 𝒪, 𝒯, Δ s.t.:

1. ℒ = locations of interest = 𝒫 ∪ℋ

– 𝒫 = *1,2,… , 𝑘+ = pickup and delivery points, 𝑘 > 0

– ℋ = *𝑘 + 1,… , 𝑘 + 𝑕+ = truck home locations, 𝑕 ≥ 0

2. 𝒪 = customer orders, |𝒪| = 𝑛. 𝑂𝑖 = (𝑂𝑆𝑖 , 𝑂𝐷𝑖 , 𝐶𝑖) s.t. :

– 𝑂𝑆𝑖 , 𝑂𝐷𝑖 ∈ 𝒫, 𝑂𝑆𝑖 ≠ 𝑂𝐷𝑖 are pickup and delivery points

– 𝐶𝑖 > 0 = requested capacity of order 𝑖. Obs: 2 ≤ 𝑘 ≤ 2𝑛.

3. 𝒯 = set of trucks, 𝒯 = 𝑡, 𝑇𝑖 = (𝐻𝑖 , Γ𝑖) s.t.

– 𝐻𝑖 ∈ ℋ, Γ𝑖 > 0 are home & provided capacity of truck 𝑖.

4. Δ = 𝑘 + 𝑕 × (𝑘 + 𝑕) real matrix s.t. Δ𝑖𝑗 > 0 are distances

between 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑘 + 𝑕.

07.12.2018 Seminar @ IBS - PAN

49

EXAMPLE PROBLEM
• 𝑘 = 3 pickup and delivery points

• 𝑛 = 3 orders: 𝒪 = * 1 → 2,5 , 1 → 3,2 , 2 → 3,6 +

• 𝑡 = 2 trucks: 𝒯 = *(4,7), (4,5)+. Trucks home is 4, so

there are 𝑕 = 1 home locations

4

1

2

3

2

5

6

07.12.2018 Seminar @ IBS - PAN

50

SCHEDULE

Tuple 〈𝑋,𝑀, 𝑆, 𝐷〉 s.t.:

1. 𝑋 ∈ 1,2,… , 𝑘 𝑚 = hops sequence of truck routes. Each

location is visited, each order needs two hops, 𝑘 ≤ 𝑚 ≤ 2𝑛.

2. 𝑀 ∈ *0,1,… ,𝑚+𝑡 s.t. 𝑀𝑙 is the number of hops of each truck

𝑙. Total number of hops: 𝑚 = 𝑙=1
𝑡 𝑀𝑙.

– 𝑀𝑙 ≥ 0 allows solutions of “at most” 𝑡 trucks.

– 𝑀𝑙 ≥ 1 constraints solutions to use “exactly” 𝑡 trucks.

3. 𝑆, 𝐷 ∈ *0,1+𝑚×𝑛 are Boolean matrices s.t.:

– 𝑆𝑖𝑗 = 1 iff 𝑋𝑖 is pickup point of order 𝑗, else 𝑆𝑖𝑗 = 0.

– 𝐷𝑖𝑗 = 1 iff 𝑋𝑖 is delivery point of order 𝑗, else 𝐷𝑖𝑗 = 0.

07.12.2018 Seminar @ IBS - PAN

51

EXAMPLE SCHEDULE
• 𝑘 = 3 pickup and delivery points

• 𝑛 = 3 orders: 𝒪 = * 1 → 2,5 , 1 → 3,2 , 2 → 3,6 +

• 𝑡 = 2 trucks: 𝒯 = *(4,7), (4,5)+. Trucks home is 4, so

there are 𝑕 = 1 home locations

07.12.2018 Seminar @ IBS - PAN

52

STATE SPACE SIZE

• 𝑋 = 𝑚, 𝑋𝑖 ∈ 1,2, … , 𝑘 , 𝑘 ≤ 𝑚 ≤ 2𝑛

• |𝑆| = 2𝑚𝑛, 𝐷 = 2𝑚𝑛

• 𝑆𝑖𝑧𝑒 = 2𝑚𝑛2𝑚𝑛𝑚𝑘2𝑛
𝑚=𝑘

• 𝑛 = 5, 𝑘 = 6

• 𝑆𝑖𝑧𝑒 = 26066 + 27076 + 28086 + 29096 + 2100106 >
𝟏𝟎𝟑𝟔 !!

07.12.2018 Seminar @ IBS - PAN

53

CONSTRAINTS

• Pickup & Delivery Definition

• Non-Redundant Hops

• Pickup Precedes Delivery

• Service Completeness

• Truck Assignments

• Capacity Constraints

• Optimization Cost

07.12.2018 Seminar @ IBS - PAN

54

PICKUP PRECEDES DELIVERY

• For all hops 𝑖, 𝑘 if there exists an order 𝑗 such that 𝑖
is the pickup point of 𝑗 and 𝑘 is the delivery point of

𝑗 then 𝑖 precedes 𝑘, so:

(∀𝑖, 𝑘) (∃𝑗 ((𝑆𝑖𝑗 = 1) ∧ (𝐷𝑖𝑗 = 1)) ⇒ 𝑖 < 𝑘)

• Using 𝑝 ⇒ 𝑞 ≡ ≦𝑞 ⇒ ≦𝑝 we obtain a simpler form:

(∀𝑖, 𝑗, 𝑘)((𝑖 ≥ 𝑘) ⇒ ((𝑆𝑖𝑗 = 0) ∨ (𝐷𝑖𝑗 = 0))

07.12.2018 Seminar @ IBS - PAN

55

CONSTRAINT LOGIC PROGRAMMING

• CLP program = facts and rules built using predicates:

i. Normal Prolog predicates handled by Prolog engine

ii. Constraints handles by special constraint solvers

• CLP program structure:

i. Definition of variables and domains

ii. Definition of constraints

iii. Definition of cost variable

iv. Search for optimal solution

07.12.2018 Seminar @ IBS - PAN

56

OPTIMIZATION AGENT – OAGENT

07.12.2018 Seminar @ IBS - PAN

57

SCHEDULING PROBLEM AS PROLOG FACTS
number_of_orders(3).

number_of_cities(3).

number_of_trucks(3).

number_of_homes(1).

% order(OrderIdx, LoadIdx, UnloadIdx, Capacity)

order(1,1,2,5).

order(2,1,3,2).

order(3,2,3,6).

% truck(TruckIdx, HomeIdx, MaxCapacity)

truck(1,4,7).

truck(2,4,4).

truck(3,4,5).

% distance(LocationI, LocationJ, DistanceIJ)

distance(1,2,10).

distance(2,1,10).

% ...

distance(4,3,10).

07.12.2018 Seminar @ IBS - PAN

58

SOLUTION PREDICATE

solution(_m,_n,_t,M,S,D,X,Ds) :-

 domains_and_variables(_m,_n,_t,M,S,D,X,Delta),

 constraints(_m,_n,_t,M,S,D,X),

 search_query(X,S,D),

 compute_distances(_m,_t,M,Delta,X,Ds).

07.12.2018 Seminar @ IBS - PAN

59

IMPLEMENTATION OF CONSTRAINTS

• Logic:

(∀𝑖, 𝑗, 𝑘)(𝑖 ≥ 𝑘 ⇒ ((𝑆𝑖𝑗 = 0) ∨ (𝐷𝑖𝑗 = 0))

• ECLiPSe-CLP:

constraint_2(M,N,S,D) :-

 (for(J,1,N), param(M,S,D) do

 (for(I,1,M), param(J,S,D) do

 (for(K,1,I), param(I,J,S,D) do

 S[I,J] #= 0 or D[K,J] #= 0

)

)

).

07.12.2018 Seminar @ IBS - PAN

60

SEARCH PROCESS

• Top level search

– Instantiates number of hops 𝑚 and vector 𝑀 of

route lengths of each truck such that:

 𝑀𝑙 = 𝑚
𝑡
𝑙=1

• Main search

– Searches for problem solutions 𝑋, 𝑆, 𝐷 for fixed

values of 𝑚 and 𝑀.

07.12.2018 Seminar @ IBS - PAN

61

SEARCH QUERY

search_query(X,S,D) :-

 search([](X,S,D),0,

 most_constrained,

 indomain_random,

 lds(2),

 [nodes(28000)]

).

Limited

discrepancy

search

Stochastic

search

07.12.2018 Seminar @ IBS - PAN

62

DATA SET & SEARCH CONFIGURATION

07.12.2018 Seminar @ IBS - PAN

63

SOLUTIONS OF 10-4 PROBLEM

07.12.2018 Seminar @ IBS - PAN

64

REFERENCES

1. Amelia Bădică, Costin Bădică, Florin Leon, Ionuţ Buligiu:

Modeling and Enactment of Business Agents Using Jason, In:

Proc. 9th Hellenic Conference on Artificial Intelligence, SETN ’16,

ACM, (2016) doi: 10.1145/2903220.2903253

2. Costin Bădică, Alex Becheru and Samuel Felton. Integration of

Jason Reinforcement Learning Agents into an Interactive

Application. In: Proc. 19th International Symposium on Symbolic

and Numeric Algorithms for Scientific Computing, (SYNASC

2017), 361-368, IEEE, (2017) doi: 10.1109/SYNASC.2017.00065

3. Costin Bǎdicǎ, Florin Leon, Amelia Bǎdicǎ. Freight transportation

broker agent based on constraint logic programming. Evolving

Systems. Springer (2018) doi: 10.1007/s12530-018-9230-3

07.12.2018 Seminar @ IBS - PAN

65 07.12.2018 Seminar @ IBS - PAN

