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IDS RESEARCH GROUP 

 

• Intelligent Distributed Systems Research 

Group  

• http://ids.software.ucv.ro/ 

• Synergies between: 

– Intelligent computing 

– Distributed computing 
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OVERVIEW 

I. Basics of AOP 

BDI 

Logic-based 
 

II. Examples 

Modeling and Enactment of Business Agents 

Programming Reinforcement Learning 

Freight Transportation Exchanges 
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ORIGIN OF WORD “AGENT” 

 

• The word “Agent” comes from the Latin word 

“Agere”. 

 

• It literally means "to do" with the sense of   

"to act" or "to take action". 
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AGENTS AND ENVIRONMENTS 

• (Weakest) Agent = anything that can be viewed as: 

– perceiving its environment through sensors and 

– acting upon that environment through actuators.  

[Russel & Norvig, 2010] 
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ENVIRONMENTS 

• (Fully / Partially / Not) Observable: 
– Noisy & inaccurate sensors 

– Immeasurable / inaccessible parts of the environment 

• (Single / Multi) Agent 
– Competitive: multiple agents with disjoint goals 

– Cooperative: multiple agents sharing (parts of) goals 

• Deterministic / Stochastic 
– Deterministic: environment state completely determined 

by agent action 

– Nondeterministic: probabilities of next states are missing  

– Uncertain: partially observable and stochastic 
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MAS TECHNOLOGIES 

 

• Methodologies 

• Standards 

• Frameworks and platforms 

• Programming languages 

• Other technologies 
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AGENT ORIENTED PROGRAMMING 
 

• AOP was firstly proposed 25 years ago as: 
 

A new programming paradigm, one based on 

cognitive and societal view of computation 

[Shoham, 1993] 
 

• Many models and implementations of AOP ! One 

representative class is based on:  

Belief-Desire-Intention architecture – BDI. 
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AGENTSPEAK(L) AND JASON 

• AgentSpeak(L) = abstract AOP language 

(Rao, 1996) 

• Jason = implementation and extension of 

AgentSpeak(L), based on Java. 

– Agent program is written in Jason. 

– Environment is written in Java. 

– Agent architecture can be customized in Java. 

• AgentSpeak(L) combines BDI and Logic 
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SOURCE OF INSPIRATION 

• Philosophy: Daniel Dennett’s “intentional 

stance”: 

– Distinguish between mental and physical 

phenomena by means of “intentionality”. 

– Explain behavior of an (artificial) entity in terms 

of its “mental properties”.  

• Dennett introduced BDI concepts:  

– belief, desire, goal, practical reasoning, … 
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BDI CONCEPTS 

• BDI follows practical reasoning model = 

reasoning towards actions. 

• BDI agents are endowed with: 

–  Beliefs 

–  Desires or goals 

–  Intentions or plans 

• Agent behavior is event-driven.  
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AGENT PROGRAM 

• Initial belief base: set of facts and rules: 

𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒(𝑡𝑒𝑟𝑚1, … , 𝑡𝑒𝑟𝑚𝑛)  

• Initial goal(s): achievement goals 

!𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒(𝑡𝑒𝑟𝑚1, … , 𝑡𝑒𝑟𝑚𝑛) 

• Plan base: set of plans: 

𝑒𝑣𝑒𝑛𝑡 : 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 <- 𝑝𝑙𝑎𝑛 𝑏𝑜𝑑𝑦  

• Event: +!𝑔𝑜𝑎𝑙   -!𝑔𝑜𝑎𝑙   +𝑏𝑒𝑙𝑖𝑒𝑓   -𝑏𝑒𝑙𝑖𝑒𝑓 

• Context: Conjunctive (&) / disjunctive (|) condition 

• Plan body: sequence of actions separated by ; 
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BDI REASONING STEPS 
 

 

 

• Update 

 
 

• Select  

 
 

 

• Act 

perceive 

communicate 

event 

applicable plan 

intention = course of action 

internal / external 

mental note 

adopt / drop goal:  
test / achievement 
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VACUUM CLEANER WORLD 
 

 

 

• Environment: 
– 2 locations 𝑙 and 𝑟 

– Status of the current location: 𝑐𝑙𝑒𝑎𝑛 or 𝑑𝑖𝑟𝑡𝑦. 

• Actions: 
– 𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔𝑕𝑡, 𝑠𝑢𝑐𝑘, 𝑛𝑜_𝑜𝑝, for “move left”, “move right”, 

“suck dirt” and “do nothing”. 

• Percepts: 
– Pair ,𝑝𝑜𝑠(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛), 𝑆𝑡𝑎𝑡𝑢𝑠-, for example ,𝑝𝑜𝑠(𝑙), 𝑑𝑖𝑟𝑡𝑦- 

𝑙 𝑟 
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REACTIVE / PROACTIVE  
+pos(l) : clean <- 

  .print("l clean"); 

  right. 

+pos(l) : dirty <- 

  .print("l dirty"); 

  suck; 

  right. 

+pos(r) : clean <- 

  .print("r clean"); 

  left. 

+pos(r) : dirty <- 

  .print("r dirty"); 

  suck; 

  left. 

!keep_clean. 

+!keep_clean : dirty & 

pos(L) <-  

  .print("suck in ",L); 

  suck; 

  !move. 

+!keep_clean : clean & 

pos(L) <- 

  .print("no suck in ",L); 

  !move. 

+!move : pos(l) <- 

  right; 

  !keep_clean. 

+!move : pos(r) <- 

  left;   

  !keep_clean. 

07.12.2018 Seminar @ IBS - PAN 



17 

LOGIC PROGRAMMING 

 

 

 

 

 

 

Belief Base Test goals 

  Logic Program = Facts + Rules + Queries 
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BUSINESS AGENTS 

• AIM: apply state-of-the-art AOP languages for 

modeling and enactment of business processes. 

 

 Case 

refinement 

Part 

refinement 

Interaction 

State 

State 

description 

Activity 

External event 
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ROLE ACTIVITY 

DIAGRAM 

• Three roles: 

– Divisional Director 

– Project Manager 

– Designer 

New project approved 

Agree TOR for 

Designer and 

delegate 

Write TOR for 

Designer 

Prepare and  

estimate 

Receive and  

estimate 

Prepare a plan 

Give Plan to 

Designer 

Choose a 

method 

Produce Design using Method 

Carry out design quality check 

ok Not ok 

Prepare Actual 

Effort Figures 

Pass Actual 

Effort Figures 

Produce Debrief  

Report 

Project completed  

and debriefed 

Agree TOR for project 

Project Manager 

Designer 

Divisional Director 
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MAPPING OUTLINE 

• RAD role => Jason agent. Eg.: d, dd, pm agents. 

• State => belief base. E.g.: dd0, dd1, dd2, d0, d1, … 

• Action => agent plan: 

+!advance : 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒 <- 

𝑟𝑒𝑚𝑜𝑣𝑒 𝑡𝑜𝑘𝑒𝑛𝑠  

𝑑𝑜 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦  

𝑎𝑝𝑝𝑒𝑛𝑑 𝑡𝑜𝑘𝑒𝑛𝑠  

!advance. 

• RAD process => multi-agent program 

07.12.2018 Seminar @ IBS - PAN 

𝑠𝑡𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒 



21 

MAPPING STATES AND ACTIVITIES 
+!advance : dd0 <- 

-dd0; 

?task("New project approved"); 

+dd1; 

!advance. 

+!advance : start <- 

-start; 

?task("Starting ..."); 

+dd0; 

!advance. 

+!advance : dd2 <- 

-dd2; 

?task("Stop"). 
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MAPPING CASE REFINEMENTS 
 

+!advance : d9 <- 

-d9; 

?task("Carry out design quality check"); 

rad.choice([ok,nok],Result) 

+d10(Result); 

!advance. 

+!advance : d10(nok) <- 

-d10(nok); 

?task("Design quality not ok"); 

+d8; 

!advance. 
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MAPPING PART REFINEMENTS 
 

+!advance : d1 <- 

-d1; 

?task("Fork parallel threads"); 

+d2; 

+d3; 

!advance. 

 

+!advance : d6 & d7 <- 

-d6; 

-d7; 

?task("Join parallel threads"); 

+d8; 

!advance. 
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MAPPING INTERACTIONS 
 

 

+!advance : start <- 

-start; 

?task("Starting ..."); 

+pm0; 

.send(dd,tell,pm0); 

!advance. 

+!advance : dd1 & pm0 <- 

-dd1; 

-pm0[source(pm)]; 

?task("Agree TOR for project"); 

+dd2; 

!advance. 
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CONTINGENCY PLAN 
 

+!advance : dd1 & pm0 <- 

-dd1; 

-pm0[source(pm)]; 

?task("Agree TOR for project"); 

+dd2; 

!advance. 

 

 

-!advance : true. 

 

 

+pm0 : true <- !advance. 
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MAPPING SUMMARY 

• One proactive plan for agent starting and one 

proactive plan for agent stopping. 

 

• A proactive plan for each action node. 

 

• One contingency plan to deal with shared beliefs 

that have not yet arrived from peer agents. 

 

• A reactive plan for handling the arrival of each 

shared belief from peer agents. 
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KNOWLEDGE-BASED BUSINESS AGENTS 

 

• Generic knowledge-based business agent 

architecture – KB2A2. 

– A knowledge base that captures the operational 

knowledge of the agent according to a given 

business process. 

– A set of template plans that capture the generic 

behavioral patterns of business agents. 
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KNOWLEDGE BASE 
 

% rule(Action, StateIn, StateOut). 

 

rule(task("Fork parallel threads"), [d1], 

  [d2,d3]). 

rule(task("Prepare and estimate"), [d3],  

  [d4,s(pm,d4)]). 

rule(task("Receive and estimate"), 

  [d4,r(pm,pm3)],[d5,s(pm,d5)]). 

... 
rule(choice("Carry out design quality check", 

  [ok,nok]), [d9], [[ok,d10(ok)],  

  [nok, d10(nok)]]). 

 

Send shared belief 

Receive shared belief 
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KB2A2 IN ACTION 
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PROGRAMMING REINFORCEMENT LEARNING 

Environment 

Agent 

action 

percept = (reward,state) 

• Passive RL: agents act according to a fixed policy and 

their learning goal is to compute the utility function. 

• Active RL: agents learn an optimal policy that maximizes 

their utility, while they are acting in their environment. 
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REINFORCEMENT LEARNING 

• Markovian stochastic environment E. 

• For each state 𝑒 agent receives reward 𝑅(𝑒) 

• Agent behavior defined by policy 𝜋: 𝐸 → 𝐴 .             
𝑎 = 𝜋 𝑒  is agent action in environment state 𝑒. 

• Agent starting in state 𝑒 generates a history: 

𝐻 𝑒 = ,𝑒0 = 𝑒, 𝑒1, … , - 

• Each history awards agent with utility:  

𝑈ℎ(𝐻(𝑒)) =  𝛾𝑖≥0
𝑖
𝑅(𝑒𝑖)  

• Utility of policy 𝜋 is: 

𝑈𝜋 𝑒 = 𝔼 𝑈ℎ 𝐻 𝑒  
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PASSIVE REINFORCEMENT LEARNING 

 

• Goal: For given policy 𝜋 the agent learns 𝑈𝜋. 

 

• Temporal Difference Learning:  

for each observed state transition 𝑒 → 𝑒′  

the agent computes an updated 𝑈𝜋(𝑒) as follows: 

 

𝑈𝜋 𝑒 + 𝛼 𝑅 𝑒 + 𝛾𝑈𝜋 𝑒′ − 𝑈𝜋 𝑒  
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ACTIVE REINFORCEMENT LEARNING 

• Goal: Compute the optimal policy 𝜋∗ that 

maximizes 𝑈𝜋. Let 𝑈 𝑒 = 𝑈𝜋
∗
(𝑒). 

•  𝑄 𝑒, 𝑎 = utility of taking action 𝑎 in state 𝑒 so 

𝑈 𝑒 = max
𝑎∈𝐴𝑐

𝑄(𝑒, 𝑎)  

• Q-learning: update 𝑄(𝑒, 𝑎) for each transition 𝑒 → 𝑒′ 
𝑄 𝑒, 𝑎 + 𝛼(𝑅 𝑒 + 𝛾 max

a′∈𝐴𝑐
𝑄(𝑒′, 𝑎′) − 𝑄 𝑒, 𝑎 ) 

• SARSA: 𝑎′ is the actual action taken in state 𝑒′ 
𝑄 𝑒, 𝑎 + 𝛼(𝑅 𝑒 + 𝛾𝑄 𝑒′, 𝑎′ − 𝑄 𝑒, 𝑎 ) 
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SYSTEM ARCHITECTURE 
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ENVIRONMENT 

• Class MDPModel to 

store & update 

environment state  

 

• Class MDPEnv to 

interface with Jason 

interpreter 

 

• Class MDPView – GUI 

& visualization 
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ACTIONS & PERCEPTS 

 

• Agent actions: 

– 𝑢𝑝, 𝑟𝑖𝑔𝑕𝑡, 𝑑𝑜𝑤𝑛, 𝑙𝑒𝑓𝑡 for the agent movement 

– 𝑛𝑢𝑙𝑙, for restarting a new trial in a random initial position. 

 

• Agent percepts 𝑝𝑜𝑠(𝑅𝑜𝑤, 𝐶𝑜𝑙𝑢𝑚𝑛, 𝑅, 𝑇) such that: 

– 𝑅𝑜𝑤 and 𝐶𝑜𝑙𝑢𝑚𝑛 give the agent position on the grid 

– 𝑅 is the reward. 

– 𝑇 is 𝑛 for non-terminal state and 𝑡 for terminal state 
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ENVIRONMENT GUI 
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STATE SUMMARY 
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AGENT CODE 

• Belief Base: 
– Counters of states and trials 

– Maximum number of trials 

– Last and next action 

– Discount factor 

– Minimum number of state visits to encourage exploration 

– Utility and number of visits for each state 

• Goals 

– Achievement goal: learning to act, i.e. determine Q-values 

– Acting = sequence of trials 

– Trial = sequence of moves 

– Update Q-values following each move  

07.12.2018 Seminar @ IBS - PAN 



40 

Q-LEARNING AGENT 
+!update_qvalue(St1,_,St,R,Q_St,A,M1) : 

   non_terminal_state(St) <- 

   .findall(Q,qvalue(St1,A1,Q,_),Qs); 

   ?maxim_list(Qs,Q_St1); 

   ?gamma(Discount); 

   ?alpha(Alpha); 

   Q1 = Q_St + Alpha*(R+Discount*Q_St1-Q_St); 

   -qvalue(St,A,_,_); 

   +qvalue(St,A,Q1,M1). 

+!update_qvalue(_,R1,St,_,_,null,M1) : 

   terminal_state(St) <- 

   -qvalue(St,null,_,_); 

   +qvalue(St,null,R1,M1). 
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Examining Q-values 
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NUMBER OF TRIALS 
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FREIGHT TRANSPORTATION EXCHANGES 

• Opportunity:  

– need of transporting goods  

– availability of free vehicles 

• Goal: 

– capturing transportation 

opportunities 

– matchmaking of owners of 

goods with freight 

transportation providers 

• New business model: virtual logistics platforms 
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MAS FOR FREIGHT BROKERING 
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AGENT INTERACTION 
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FREIGHT BROKER AGENT  

• Declarative optimization model of the 

FBAgent: 

– Defined as type of Vehicle Routing with 

Pickup and Delivery Problem – VR-PDP 

– Computing optimal schedules using 

Constraint Logic Programming – CLP. 

07.12.2018 Seminar @ IBS - PAN 



47 

VR-PDP 

• Well-known problem in operation research: 

Given:  

– A set of customers 

– A vehicle pool to service deliveries 

Determine:  

– A minimum cost set of vehicle routes that services 

all customers 

• Service: 

– Pickup = freight loading point 

– Delivery = freight unload point 
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PROBLEM 
Tuple ℒ, 𝒪, 𝒯, Δ  s.t.: 

1.  ℒ = locations of interest = 𝒫 ∪ℋ 

–  𝒫 = *1,2,… , 𝑘+ = pickup and delivery points, 𝑘 > 0 

–  ℋ = *𝑘 + 1,… , 𝑘 + 𝑕+ = truck home locations, 𝑕 ≥ 0 

2.  𝒪 = customer orders, |𝒪| = 𝑛. 𝑂𝑖 = (𝑂𝑆𝑖 , 𝑂𝐷𝑖 , 𝐶𝑖) s.t. : 

–  𝑂𝑆𝑖 , 𝑂𝐷𝑖 ∈ 𝒫, 𝑂𝑆𝑖 ≠ 𝑂𝐷𝑖 are pickup and delivery points 

–  𝐶𝑖 > 0 = requested capacity of order 𝑖. Obs: 2 ≤ 𝑘 ≤ 2𝑛. 

3.  𝒯 = set of trucks, 𝒯 = 𝑡,  𝑇𝑖 = (𝐻𝑖 , Γ𝑖) s.t. 

–  𝐻𝑖 ∈ ℋ, Γ𝑖 > 0 are home & provided capacity of truck 𝑖. 

4.  Δ = 𝑘 + 𝑕 × (𝑘 + 𝑕) real matrix s.t. Δ𝑖𝑗 > 0 are distances 

between 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑘 + 𝑕. 
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EXAMPLE PROBLEM 
• 𝑘 = 3 pickup and delivery points  

• 𝑛 = 3 orders: 𝒪 = * 1 → 2,5 , 1 → 3,2 , 2 → 3,6 + 

• 𝑡 = 2 trucks: 𝒯 = *(4,7), (4,5)+. Trucks home is 4, so 

there are 𝑕 = 1 home locations 

4 

1 

2 

3 

2 

5 

6 
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SCHEDULE 
 

Tuple 〈𝑋,𝑀, 𝑆, 𝐷〉 s.t.: 

1.  𝑋 ∈ 1,2,… , 𝑘 𝑚 = hops sequence of truck routes. Each 

location is visited, each order needs two hops, 𝑘 ≤ 𝑚 ≤ 2𝑛. 

2.  𝑀 ∈ *0,1,… ,𝑚+𝑡 s.t. 𝑀𝑙 is the number of hops of each truck 

𝑙. Total number of hops: 𝑚 =  𝑙=1
𝑡 𝑀𝑙.  

– 𝑀𝑙 ≥ 0 allows solutions of “at most” 𝑡 trucks.  

– 𝑀𝑙 ≥ 1 constraints solutions to use “exactly” 𝑡 trucks. 

3.  𝑆, 𝐷 ∈ *0,1+𝑚×𝑛 are Boolean matrices s.t.: 

–  𝑆𝑖𝑗 = 1 iff 𝑋𝑖 is pickup point of order 𝑗, else 𝑆𝑖𝑗 = 0. 

–  𝐷𝑖𝑗 = 1 iff 𝑋𝑖 is delivery point of order 𝑗, else 𝐷𝑖𝑗 = 0. 
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EXAMPLE SCHEDULE 
• 𝑘 = 3 pickup and delivery points  

• 𝑛 = 3 orders: 𝒪 = * 1 → 2,5 , 1 → 3,2 , 2 → 3,6 + 

• 𝑡 = 2 trucks: 𝒯 = *(4,7), (4,5)+. Trucks home is 4, so 

there are 𝑕 = 1 home locations 
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STATE SPACE SIZE 

 

•  𝑋 = 𝑚, 𝑋𝑖 ∈ 1,2, … , 𝑘 , 𝑘 ≤ 𝑚 ≤ 2𝑛 

•  |𝑆| = 2𝑚𝑛, 𝐷 = 2𝑚𝑛 

•  𝑆𝑖𝑧𝑒 =  2𝑚𝑛2𝑚𝑛𝑚𝑘2𝑛
𝑚=𝑘  

 

•  𝑛 = 5, 𝑘 = 6 

•  𝑆𝑖𝑧𝑒 = 26066 + 27076 + 28086 + 29096 + 2100106 >
𝟏𝟎𝟑𝟔 !! 
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CONSTRAINTS 

• Pickup & Delivery Definition 

• Non-Redundant Hops 

• Pickup Precedes Delivery 

• Service Completeness 

• Truck Assignments 

• Capacity Constraints 

• Optimization Cost 
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PICKUP PRECEDES DELIVERY 
 

• For all hops 𝑖, 𝑘 if there exists an order 𝑗 such that 𝑖 
is the pickup point of 𝑗 and 𝑘 is the delivery point of 

𝑗 then 𝑖 precedes 𝑘, so: 

(∀𝑖, 𝑘) ( ∃𝑗 ((𝑆𝑖𝑗 = 1) ∧ (𝐷𝑖𝑗 = 1)) ⇒ 𝑖 < 𝑘 )  

 

• Using 𝑝 ⇒ 𝑞 ≡ ≦𝑞 ⇒ ≦𝑝 we obtain a simpler form: 

(∀𝑖, 𝑗, 𝑘)((𝑖 ≥ 𝑘) ⇒ ((𝑆𝑖𝑗 = 0) ∨ (𝐷𝑖𝑗 = 0)) 
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CONSTRAINT LOGIC PROGRAMMING 

•  CLP program = facts and rules built using predicates: 

i. Normal Prolog predicates handled by Prolog engine 

ii. Constraints handles by special constraint solvers 

 

•  CLP program structure: 

i. Definition of variables and domains 

ii. Definition of constraints 

iii. Definition of cost variable 

iv. Search for optimal solution 
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OPTIMIZATION AGENT – OAGENT 
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SCHEDULING PROBLEM AS PROLOG FACTS 
number_of_orders(3). 

number_of_cities(3). 

number_of_trucks(3). 

number_of_homes(1). 

% order(OrderIdx, LoadIdx, UnloadIdx, Capacity) 

order(1,1,2,5). 

order(2,1,3,2). 

order(3,2,3,6). 

% truck(TruckIdx, HomeIdx, MaxCapacity) 

truck(1,4,7). 

truck(2,4,4). 

truck(3,4,5). 

% distance(LocationI, LocationJ, DistanceIJ) 

distance(1,2,10). 

distance(2,1,10). 

% ... 

distance(4,3,10). 

07.12.2018 Seminar @ IBS - PAN 



58 

SOLUTION PREDICATE 
 

 

 

solution(_m,_n,_t,M,S,D,X,Ds) :- 

   domains_and_variables(_m,_n,_t,M,S,D,X,Delta), 

   constraints(_m,_n,_t,M,S,D,X), 

   search_query(X,S,D), 

   compute_distances(_m,_t,M,Delta,X,Ds). 
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IMPLEMENTATION OF CONSTRAINTS 

• Logic: 

(∀𝑖, 𝑗, 𝑘)( 𝑖 ≥ 𝑘 ⇒ ((𝑆𝑖𝑗 = 0) ∨ (𝐷𝑖𝑗 = 0)) 
 

• ECLiPSe-CLP: 
 

constraint_2(M,N,S,D) :- 

   ( for(J,1,N), param(M,S,D) do 

      ( for(I,1,M), param(J,S,D) do 

         ( for(K,1,I), param(I,J,S,D) do 

            S[I,J] #= 0 or D[K,J] #= 0 

         ) 

      ) 

   ). 
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SEARCH PROCESS 

 

• Top level search 

– Instantiates number of hops 𝑚 and vector 𝑀 of 

route lengths of each truck such that: 

 𝑀𝑙 = 𝑚
𝑡
𝑙=1   

 

• Main search 

– Searches for problem solutions 𝑋, 𝑆, 𝐷 for fixed 

values of 𝑚 and 𝑀. 
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SEARCH QUERY 
 

 

 

search_query(X,S,D) :- 

   search([](X,S,D),0, 

      most_constrained, 

      indomain_random, 

      lds(2), 

      [nodes(28000)] 

   ). 

Limited 

discrepancy 

search 

Stochastic 

search 
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DATA SET & SEARCH CONFIGURATION 
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SOLUTIONS OF 10-4 PROBLEM 
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